12,132 research outputs found

    Statistical modelling for prediction of axis-switching in rectangular jets

    Get PDF
    Rectangular nozzles are increasingly used for modern military aircraft propulsion installations, including the roll nozzles on the F-35B vertical/short take-off and landing strike fighter. A peculiar phenomenon known as axis-switching is generally observed in such non-axisymmetric nozzle flows during which the jet spreads faster along the minor axis compared to the major axis. This might affect the under-wing stores and aircraft structure. A computational fluid dynamics study was performed to understand the effects of changing the upstream nozzle geometry on a rectangular free jet. A method is proposed, involving the formulation of an equation based upon a statistical model for a rectangular nozzle with an exit aspect ratio (ARe) of 4; the variables under consideration (for a constant nozzle pressure ratio (NPR)) being inlet aspect ratio (ARi) and length of the contraction section. The jet development was characterised using two parameters: location of the cross-over point (Xc) and the difference in the jet half-velocity widths along the major and minor axes (ΔB30). Based on the observed results, two statistical models were formulated for the prediction of axis-switching; the first model gives the location of the cross-over point, while the second model indicates the occurrence of axis-switching for the given configuration

    A volumetric Penrose inequality for conformally flat manifolds

    Full text link
    We consider asymptotically flat Riemannian manifolds with nonnegative scalar curvature that are conformal to Rn∖Ω,n≄3\R^{n}\setminus \Omega, n\ge 3, and so that their boundary is a minimal hypersurface. (Here, Ω⊂Rn\Omega\subset \R^{n} is open bounded with smooth mean-convex boundary.) We prove that the ADM mass of any such manifold is bounded below by (V/ÎČn)(n−2)/n(V/\beta_{n})^{(n-2)/n}, where VV is the Euclidean volume of Ω\Omega and ÎČn\beta_{n} is the volume of the Euclidean unit nn-ball. This gives a partial proof to a conjecture of Bray and Iga \cite{brayiga}. Surprisingly, we do not require the boundary to be outermost.Comment: 7 page

    Flare induced penumbra formation in the sunspot of NOAA 10838

    Full text link
    We have observed formation of penumbrae on a pore in the active region NOAA10838 using Dunn Solar Telescope at NSO,Sunpot,USA. Simultaneous observations using different instruments (DLSP,UBF,Gband and CaK) provide us with vector magnetic field at photosphere, intensity images and Doppler velocity at different heights from photosphere to chromosphere. Results from our analysis of this particular data-set suggests that penumbrae are formed as a result of relaxation of magnetic field due to a flare happening at the same time. Images in \Halpha\ show the flare (C 2.9 as per GOES) and vector magnetic fields show a re-orientation and reduction in the global α\alpha value (a measure of twist). We feel such relaxation of loop structures due to reconnections or flare could be one of the way by which field lines fall back to the photosphere to form penumbrae.Comment: 4 pages, Presented at IAU symposium 273- Physics of Sun and Starspot

    Dynamics of Ordering of Heisenberg Spins with Torque --- Nonconserved Case. I

    Full text link
    We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two parts --- an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically (Langevin simulation) and analytically (approximate closure scheme due to Mazenko), that the torque is irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an analysis, carried out for the first time on a vector order parameter, shows that the closure scheme performs respectably well. For quenches to TcT_c, we show, to O(ϔ2){\cal O}(\epsilon^2), that the torque is irrelevant at the Wilson-Fisher fixed point.Comment: 13 pages, REVTEX, and 19 .eps figures, compressed, Submitted to Phys. Rev.

    Scaling Analysis of Domain-Wall Free-Energy in the Edwards-Anderson Ising Spin Glass in a Magnetic Field

    Get PDF
    The stability of the spin-glass phase against a magnetic field is studied in the three and four dimensional Edwards-Anderson Ising spin glasses. Effective couplings and effective fields associated with length scale L are measured by a numerical domain-wall renormalization group method. The results obtained by scaling analysis of the data strongly indicate the existence of a crossover length beyond which the spin-glass order is destroyed by field H. The crossover length well obeys a power law of H which diverges as H goes to zero but remains finite for any non-zero H, implying that the spin-glass phase is absent even in an infinitesimal field. These results are well consistent with the droplet theory for short-range spin glasses.Comment: 4 pages, 5 figures; The text is slightly changed, the figures 3, 4 and 5 are changed, and a few references are adde

    Phase Ordering Kinetics of One-Dimensional Non-Conserved Scalar Systems

    Full text link
    We consider the phase-ordering kinetics of one-dimensional scalar systems. For attractive long-range (r−(1+σ)r^{-(1+\sigma)}) interactions with σ>0\sigma>0, ``Energy-Scaling'' arguments predict a growth-law of the average domain size L∌t1/(1+σ)L \sim t^{1/(1+\sigma)} for all σ>0\sigma >0. Numerical results for σ=0.5\sigma=0.5, 1.01.0, and 1.51.5 demonstrate both scaling and the predicted growth laws. For purely short-range interactions, an approach of Nagai and Kawasaki is asymptotically exact. For this case, the equal-time correlations scale, but the time-derivative correlations break scaling. The short-range solution also applies to systems with long-range interactions when σ→∞\sigma \rightarrow \infty, and in that limit the amplitude of the growth law is exactly calculated.Comment: 19 pages, RevTex 3.0, 8 FIGURES UPON REQUEST, 1549

    Persistence of Manifolds in Nonequilibrium Critical Dynamics

    Full text link
    We study the persistence P(t) of the magnetization of a d' dimensional manifold (i.e., the probability that the manifold magnetization does not flip up to time t, starting from a random initial condition) in a d-dimensional spin system at its critical point. We show analytically that there are three distinct late time decay forms for P(t) : exponential, stretched exponential and power law, depending on a single parameter \zeta=(D-2+\eta)/z where D=d-d' and \eta, z are standard critical exponents. In particular, our theory predicts that the persistence of a line magnetization decays as a power law in the d=2 Ising model at its critical point. For the d=3 critical Ising model, the persistence of the plane magnetization decays as a power law, while that of a line magnetization decays as a stretched exponential. Numerical results are consistent with these analytical predictions.Comment: 4 pages revtex, 1 eps figure include

    Prediction of pressure-induced red shift of f->d(t2g) excitations in Cs2NaYCl6:Ce(3+) and its connection with bond length shortening

    Full text link
    Quantum chemical calculations including embedding, scalar relativistic, and dynamic electron correlation effects on Cs2NaYCl6:(CeCl6)3- embedded clusters predict: (i) red shifts of the 4f->5d(t2g) transition with pressure and (ii) bond length shortening upon 4f->5d(t2g) excitation. Both effects are found to be connected which suggests that new high pressure spectroscopic experiments could reveal the sign of the bond length change.Comment: 6 pages text; 1 table; 3 figures; to be published in J.Chem.Phy

    Domain-Wall Energies and Magnetization of the Two-Dimensional Random-Bond Ising Model

    Full text link
    We study ground-state properties of the two-dimensional random-bond Ising model with couplings having a concentration p∈[0,1]p\in[0,1] of antiferromagnetic and (1−p)(1-p) of ferromagnetic bonds. We apply an exact matching algorithm which enables us the study of systems with linear dimension LL up to 700. We study the behavior of the domain-wall energies and of the magnetization. We find that the paramagnet-ferromagnet transition occurs at pc∌0.103p_c \sim 0.103 compared to the concentration pn∌0.109p_n\sim 0.109 at the Nishimory point, which means that the phase diagram of the model exhibits a reentrance. Furthermore, we find no indications for an (intermediate) spin-glass ordering at finite temperature.Comment: 7 pages, 12 figures, revTe
    • 

    corecore